Numerical null controllability of the 2D Stokes equations

ENRIQUE FERNÁNDEZ-CARA
Dpto. de Ecuaciones Diferenciales y Análisis Numerico, Universidad de Sevilla
cara@us.es

ARNAUD MÜNCH
Laboratoire de Mathématiques, Université Blaise Pascal (Clermont-Ferrand 2)
arnaud.munch@math.univ-bpclermont.fr

DIEGO SOUZA
Dpto. de Matemática, Universidade Federal da Paraíba
daraujo_s@hotmail.com

Abstract

The aim of this talk is to present a new strategy to solve numerically the null controllability problem for the 2D Stokes equations. The main idea is to adapt the Fursikov-Imanuvilov’s formulation, see [2]; this strategy has been applied recently to the heat equation by the first two authors. In practice, this needs the solution of a differential problem in the three variables x_1, x_2 and t that is second order in time and fourth order in space. The approximation is performed with mixed finite Lagrangian C^0 elements, see [1]. In this talk we describe the method and we present some numerical experiments.

Sección en el CEDYA 2011: AN

Bibliography
