Models for growth of heterogeneous sandpiles via Mosco convergence

M. BOCEA,
Department of Mathematics, North Dakota State University
marian.bocea@ndsu.edu

M. MIHĂILESCU
Department of Mathematics, University of Craiova, Romania
mmihai@ yahoo.com

MAYTE PÉREZ-LLANOS
Dpto. de Matemáticas, Universidad Autónoma de Madrid
mayte.perez@uam.es

J. D. ROSSI
Dpto.de Análisis Matemático, Universidad de Alicante
julio.rossi@ua.es

Resumen

In this paper we study the asymptotic behavior of several classes of power-law functionals involving variable exponents $p_n(\cdot) \to \infty$, via Mosco convergence.

In the particular case $p_n(\cdot) = np(\cdot)$, we show that the sequence $\{H_n\}$ of functionals $H_n : L^2(\mathbb{R}^N) \to [0, +\infty]$ given by

$$H_n(u) = \begin{cases} \int_{\mathbb{R}^N} \lambda(x)^n \frac{\nabla u(x)}{np(x)}(\cdot)^{np(x)} \, dx & \text{if } u \in L^2(\mathbb{R}^N) \cap W^{1,np}(\mathbb{R}^N) \\ +\infty & \text{otherwise,} \end{cases}$$

converges in the sense of Mosco to a functional which vanishes on the set

$$\left\{ u \in L^2(\mathbb{R}^N) : \lambda(x)|\nabla u|^p \leq 1 \text{ a.e. } x \in \mathbb{R}^N \right\}$$

and is infinite in its complement. We also provide an example of a sequence of functionals whose Mosco limit cannot be described in terms of the characteristic function of a subset of $L^2(\mathbb{R}^N)$.

As an application of our results we obtain a model for the growth of a sandpile in which the allowed slope of the sand depends explicitly on the position in the sample.

EDP:

Bibliography